COMPRESSION OF MAGNETIC FIELD IN AN IMPLODING
SPHERICAL CAVITY

V. K. Bodulinskii and Yu. A. Medvedev

The equations describing the compression of a magnetic field, produced by 2 system of meridional
currents, in an imploding spherical cavity are solved in the present communication.

The compression of a magnetic field between two approaching perfectly conducting surfaces is in-
vestigated by the method of characteristics in [1, 2]. The case of a cylindrical geometry is examined in
[2] by means of integral transformations. The solutions of these problemshave a bearing on the physieal
processes occurring in systems in which a certain "favored" dimension can be ascertained.

In a number of cases (in the experiments described in [3], for example) the most important, final
stage of compression occurs in a volume which has no particularly well expressed favored dimension., In
this connection we consider below the compression of a magnetic field in a spherical cavity. Unlike the
corresponding problem for a cylindrical geometry [2], the present problem permits of a simple and readily
comprehensible solution,

1. The electrodynamic problem to be considered is that of the compression of an initially produced
magnetic field in an imploding spherical cavity in a perfectly conducting medium. We restrict the discus-
sion to the case when the radius of the cavity varies linearly with time:

a(t) = ag — vi (1.1}
where a; is the initial radius of the cavity.

The experimental variation of a(t) reported in [1] indicates that (1.1) is obeyed quite well in practice
right up to a time approaching the moment of maximum compression.

As the initial field we take the field produced by an axially symmetric system of currents (shown in
Fig. 1). The surface meridional currents j (total current I) enter at A a wire AB across the diameter of the
cavity and leave the wire at B.

In a spherical coordinate system with origin at the center of the sphere it follows from symmetry
considerations that the only nonzero components of the electromagnetic field are H ,, Eg. and E,.. It
follows immediately from Maxwell's equations that time derivatives of all orders of the radial component
are zero, so that this component is not excited during implosion.

We thus arrive at the following problem. It is required to solve Maxwell's equations subject to the
initial conditions

Irlsind)? ¢ <a) (1.2)
Hy(r,4,0)= Ey(r,9,0)=0
0 {r > ao)
and the boundary condition
Ega@, &, ) —ac 1 H (e (1), 8, 1) =0 (1.3)

The latter condition must hold at a perfectly conducting surface [4] moving with a velocity da/dt.
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Maxwell's equations, in conjunction with the boundary and the initial
conditions, permit separation of the angular variable if we put

B, (8, 8)=En®) (1), Eg(r, %, 1) = (sin®) e (, 1) (1.4)

2. Separating out the angular dependence and eliminating the function
e (r, t) from the equations and the boundary and initial conditions, we arrive
at the problem

ah 2 0n 1 9% ! o
a7 T e — e em =0 B 0=, ( Z )t=0=0

oh a ah 1 4 h
(0 ot () b te = —a 4 2D )

B=vie=—a/ec)
We solve (2.1) with the aid of a Fourier-Bessel transformation:
a(t)

Dk, )= S h(r, t) no (kr) ridr
o (ro =~ %) @.2)

oo
h(r, t)=2n" S D (k, 1) no (kr) Kdk
0

Here n; is the spherical Neumann function of order zero. The choice of ny(kr) as eigenfunction is
dictated by the singularity in the initial distribution (1.2) at r =0.
Application of transformation (2.2) reduces (2.1) to an equation for & (k, t)
PO | d? + BA® = — @ (1 — B?) ka® §o' (ka)  (a, 2) (2.3)
with the initial conditions

@ (k, 0) = — Ik2sin kay, (d® / di),_o = O 2.4

The solution satisfying (2.3) and (2.4) has the form
t

@ (k, 1) =— Ik 2sin kag cos ket —c (1 —B% S a? (z) B* (t) jo (ke (1)) sin ke (t—7)dr
0 (2.5)
(R*(t) = h(a(d), 1))

The unknown field at the boundary of the cavity appears in (2.5). To determine this field we put r =
a(t) in the inversion formula of (2.2) and double the integral on the right side since

R¥ () =2"1h@@+0,)+R2@®—0,0], ha@®+0,2)=0

This gives the following functional equation for h*(t):

e Lo G 2.6)
R* (1) =12h* (Y (1 — 1)) (B<E< Ty = (L1B) / (1=
We define a time sequence {tn} in the following manner:
¢ (tn — tng) = @ (tn) + @ (tn_y) @.7)

From (2.7) we obtain
t=TA—7") (n=0,12,.0)

The sequence {tn} converges to T as n—. The differences t, ~t,_; correspond to the times taken
by the electromagnetic wave to traverse the path wall-center-wall. The solution of Eg. (2.6) thus has the

form

r iy =1t —p) U e (] <1<ty (2.8)
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(o)
.

The required solution h(r, t) is obtained by substituting (2.8) into (2.5) and the latter into (2.2):

Ir 1, 0< << (ao—r)
h(r, )= 1{ YaIr ™ (v 1), ty o a(ty) — 1 <1< 1y + ¢ a (t0) +- 1]
Iy, tn 467 @ () + 1] < <ty + ¢ @ (ty,) — 7]
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